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Abstract

We report a theoretical study on the role of shallow d states in the screened-exchange local

density approximation (sX-LDA) band structure of binary semiconductor systems. We found that

the inaccurate pseudo-wavefunctions can lead to 1) an overestimation of the screened-exchange

interaction between the localized d states and the delocalized higher energy s and p states and

2) an underestimation of the screened-exchange interaction between the d states. The resulting

sX-LDA band structures have substantially smaller band gaps compared with experiments. We

correct the pseudo-wavefunctions of d states by including the semicore s and p states of the same

shell in the valence states. The correction of pseudo-wavefunctions yields band gaps and the d state

binding energy with good agreements with experiments and the full potential linearized augmented

planewave (FLAPW) calculations. Compared with the quasi-particle GW method, our sX-LDA

results shows not only similar quality on the band gaps but also much better d state binding energy.

Combined with its capability of ground state structure calculation, the sX-LDA is expected to be

a valuable theoretical tool for the II-VI and III-V (especially the III-N) bulk semiconductors and

nanostructure studies.
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I. INTRODUCTION

The vast majority of modern ab initio condensed matter calculations are based on the

density functional theory (DFT). [1] The Kohn-Sham (KS) scheme[2] made it possible to

apply the DFT to realistic systems by mapping the many-body systems to auxiliary single

particle systems, and has been proven to be extremely successful for the ground state prop-

erties. Among different numerical methods to solve the KS equations, the pseudopotential

(PP) methods are particularly favored due to its computational efficiency resulting from

the replacement of the sharp ionic potential with a much softer one.[3–5] The remarkable

success of the PP method relies on the fact that the core states, i.e., the states whose atomic

eigenvalues are much lower than the valence states, are inert to the changes in the elec-

tron density outside of the so called core-radius. The norm conservation condition on the

PP’s guarantees that the net electron density in PP calculation inside the core-radius agree

with the electron density in the all-electron (AE) calculations and, at the same time, the

wavefunctions outside of the core-radius are the same in PP and AE methods.

The screened-exchange local density approximation (sX-LDA) method was proposed as

an example of the generalized Kohn-Sham (GKS) scheme as a means of overcoming the well-

known band gap problem in KS schemes.[6, 7] While still within the auxiliary non-interacting

electron scheme, GKS includes the energy functional which has an explicit wavefunction de-

pendence. It has been demonstrated that the sX-LDA within the plane-wave pseudopotential

method are very successful for many of group III-V and IV semiconductors.[7] Preliminary

calculations on group II-VI and some of group III-V semiconductors, however, show that

sX-LDA method with LDA norm conserving PPs yields poor band gaps. The common

features of these semiconductors is the presence of shallow cation d states. In contrast, it

has been reported that the sX-LDA without PP’s within full-potential linearized augmented

planewave (FLAPW) method is accurate regardless of the presence of shallow d states.[8]

In this paper, we discuss the role of the shallow d states in sX-LDA method.

Our major findings are as follow. 1) In the presence of shallow d states, using the con-

ventional LDA pseudopotentials the sX-LDA predicts band gaps are substantially smaller

than experiments. This is due to the pseudo-wavefunction error in the LDA pseuodopoten-

tials. 2) The sX-LDA band gap can be corrected by including the semicore s and p states.

This procedure improves the nonlocal screened-exchange interaction by forcing the valence
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pseudowavefunctions to agree with all-electron wavefunction outside a very small radius. 3)

The inclusion of semi-core states also improves the d state position in sX-LDA. While the

sX-LDA band gap is comparable to the GW band gap, the d state position in sX-LDA is

actually in much better agreement with experiments.

II. MEHTODS

The single particle states in sX-LDA method are found by minimizing the total energy

defined as

Etot[v] = T + EH[ρ] + EsX[{ψ}] +R[ρ] + Eext[v] (1)

with the electron density defined as

ρ(r) =
occ∑
i

|ψi(r)|
2. (2)

In Eq.(1), T , EH[ρ], and Eext[v] are the kinetic energy, the direct Hartree Coulomb energy,

and the external potential energy, respectively. The screened-exchange energy is defined

with a Thomas-Fermi screening function;

EsX[{ψ}] = −
1

2

occ∑
i,j

∫ ∫
drdr′

ψ∗
i (r)ψ

∗
j (r

′)ψj(r)ψi(r
′)e−kTF |r−r

′|

|r− r′|
, (3)

where kTF is the screening length determined from the average density of electrons. R[ρ] is

the difference between the LDA exchange-correlation energy and the local approximation of

the screened-exchange energy, EsX[{ψ}];

R[ρ] = ELDA
xc [ρ] − E loc

sX [ρ] . (4)

Note that PP’s are usually derived from the LDA formalism and, as a result, they do not

guarantee the adequacy in the nonlocal sX-LDA formalism. Strictly speaking, this way of

constructing PP’s is not consistent with the sX-LDA approach. A better way is to contruct

a PP with its sX-LDA pseudopotential and pseudo wavefunction results agree with the all

electron results (e.g, construct the PP within the sX-LDA formalism). It is known from

the exact exchange (EXX) method that PP’s generated within EXX can be substantially

different from the one generated within LDA.[9] It has also been studied that the optimal

screening length of sX-LDA method in the atomic configurations is very different from the
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bulk Thomas-Fermi screening length.[10] However, because of the nonlocality of the sX-

LDA formalism, just as in Harree-Fock theory [? ], there is no rigorous way to generate the

sX-LDA pseudopotentials. To our knowledge, all the previous planewave sX-LDA studies

have used PP’s generated within the LDA method. This situation is rather analogous to

that of GW calculations, where the LDA PP’s are used without any modification. The

most desirable approach is to include all the electrons, just like what is implemented in the

FLAPW method. But to use planewave as the basis to calculate larger systems, one has

to use PP. This is the topic of the current paper. Our previous studies indicate that the

LDA PP’s work well for sX-LDA when d states are not present. Therefore, we believe it is

a practical approach to apply the LDA PP’s to the sX-LDA formalism and to understand

any problem in the LDA-PP sX-LDA calcualtions, and to correct these problems based on

our understanding.

The question regarding the LDA PP’s in sX-LDA arises from the orbital dependence

of EsX[{ψ}]. The difference between the all-electron wavefunctions and the pseudo-

wavefunction in the core region causes errors in the screened-exchange integral of Eq(3),

which has not been taken into account in the PP generation based on LDA formalism. To

investigate the effects of PP in the presence of shallow d-states, we follow the procedure

prescribed in GW studies by Rohlfing et al.[11] and Luo et al..[12] Two sets of cation atom

PP’s are studied; 1) (+12/+13) PP’s with d electrons and the outer shell electrons in the

valence. The numbers in the parenthesis denotes the number of valence electrons used in

the PP calculation for column II and III cations respectively. 2) (+20/+21) PP’s with entire

semicore s, p, and d electrons as well as the outer shell electrons in the valence. For example,

in case of Zn atom, (+12) Zn PP includes 3d and 4s electrons in the valence. (+20) Zn PP,

on the other hand, includes 3s, 3p, 3d, and 4s electrons in the valence. For lower charge

state cation atoms, i.e. (+12/+13) PP, we use the conventional norm conversing PP’s. For

higher charge state cation atoms, i.e. (+20/+ 21) PP, we first construct the PP for an ion

without the outer shell electrons and then vary the core-radius of each PP angular momen-

tum channel to fit the eigenvalues of the neutral atom configuration. For instance, for a Zn

atom we first build (Ne)3s23p63d10 PP’s. This (+20) Zn PP is used for (Ne)3s23p63d104s2

configuration, and the eigenvalues are compared with the AE calculation results. This com-

plicated procedure is required because, in the conventional pseudopotential generators, only

one reference state for one angular momentum can be used. Our PP’s yield good outer
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shell eigenvalues with the energy discrepancy < 0.1 eV and the d state eigenvalues with the

energy discrepancy . 0.15 eV. This is shown in Table I. Although there is a small difference

in the d state energy, we found that this does not cause any significant change in the band

gap in following calculations.

The effects of inclusion of semicore states on the valence pseudo-wavefunctions are shown

in Fig. 1. The most notable difference between (+12) Zn PP wavefunctions and (+20) Zn

PP is the overall location of the d orbitals. The center of mass of the all electron d orbital

and that of (+20) Zn PP is much closer to the nucleus than the d orbital of (+12) Zn PP.

This results in the much smaller overlap between the d states and the delocalized s and p

states. In addition, the nodal structure of the valence wavefunctions are changed thanks to

the orthonormality condition with the semicore states.

III. RESULTS AND DISCUSSIONS

The error introduced by the usage of the pseudopotentials can be analyzed in terms of the

screened-exchange integral between the atomic orbitals. The screened-exchange interaction

between the atomic orbitals {φα} is

Kαβγδ =

∫
dr1

∫
dr2φ

∗
α(r1)φ

∗
β(r2)φγ(r1)φδ(r2)

e−kTF |r1−r2|

|r1 − r2|
, (5)

where α, β, γ, and δ are the composite quantum numbers consist of the orbital angular

momenta, l and m, and the spin, σ. Note that the opposite spins do not contribute to the

exchange integral. As for the screening length, kTF , we have chosen a typical bulk screening

length using the average valence charge density, including s and p states. In Table I we show

the screened-exchange integral Kl,l′ ≡ Kl,l′,l′,l of neutral atomic configurations. For the sake

of simplicity, we averaged the integral over the magnetic quantum number, m, and restricted

ourselves to the integral of the two orbitals l and l′. The screened-exchange integral between

the highest s and p states, i.e., Kss, Kpp, and Ksp, are almost identical to AE results

regardless of the PP’s. This is because the s and p wavefunctions have nodes at similar

radius and, as a result, they have little weight in the nodal points. Therefore, the nodal

structure of these wavefunctions are of less importance in the exchange integral between

themselves. In the case of d orbitals, however, the nodal structure plays important role in

the screened-exchange, conspiring with the center of mass position of the wavefunctions. The
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larger overlap between the d orbitals and the s and p orbitals of (+12/+13) PP is reflected

in the large Ksd(+12/ + 13)/Ksd(AE) and Kpd(+12/ + 13)/Kpd(AE). The larger error of

Ksd(+20/ + 21) and Kpd(+20/ + 21) relative to Kdd(+20/ + 21) probably stems from the

nodal structure error in the s and p pseudo-wavefunctions. The screened exchange is smaller

for wider spread wavefunctions because of the e−kTF r/r screened Coulomb interaction. d-d

overlap, therefore, is much smaller in (+12/+13) PP calculations than in (+20+21) PP and

the all-electron calculations.

Having established the fact that the full semicore states are necessary for proper d orbitals

in sX-LDA, we calculate the electronic structure of test systems where the shallow d states

are essential. Fig. 2 shows the band structure of ZnS calculated with (+12) Zn PP and (+20)

Zn PP. We find that the LDA results do not show any significant difference on including the

semicore states, implying that both PP’s are good LDA PP’s. For (+12) Zn PP, the top

valence bands are almost identical in LDA and sX-LDA (after a rigid shift). The notable

changes in sX-LDA are the band gap increase as well as the deepening of d band position

and the lower Zn s bands. Although improved by ∼ 0.7 eV over LDA, the sX-LDA band

gap, 2.41 eV, is too small compared with experimental value of 3.78 eV whn (+12) Zn PP is

used. The inclusion of the whole Zn semicore states, as shown in Fig. 2 (b), further increase

the gap between the valence bands and the conduction bands by ∼ 0.8 eV, and makes

the comparison with experiment much better. The relative position of d bands, however,

undergoes a relatively small change,∼ 0.2 eV.

The changes of band structure can be further analyzed by looking at the absolute eigen-

values of the KS equations. Fig. 3 shows the band edge states of ZnS. The energies are

plotted relative to the LDA valence band maximum (VBM) energy for each PP. The ab-

solute eigenvalues in sX-LDA are generally downshifted compared with LDA eigenvalues.

It is due to the fact that the screened-exchange potential is always negative. The sX-LDA

band gaps are larger than those of LDA because the valence band are pull down even more

than the conduction bands. The comparison between the sX-LDA resutls with different

PP’s shows that the inclusion of the semicore s and p states makes the conduction band

downshift smaller, while keeping the valence bands and the d states almost unchanged. In

other words, the error in d state wavefunctions in (+12) Zn PP causes the overestimation

of the conduction band-d states exchange interaction and leads to a underestimation of the

band gap.
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In addition to ZnS, we studied effects of d states in the sX-LDA for ZnSe, CdS, GaN,

and InN. The results are summaries in Table II. For all the systems studied, the sX-LDA

with (+12/+13) PP’s, i.e., PP’s without semicore s and p states, yields substantially smaller

band gaps compared with experiments. When the full semicore states are included in PP’s,

the sX-LDA band gaps are improved and the results are comparable to GW results. The

band gap discrepancy between the sX-LDA results and the experiements is less than 0.5 eV

in all cases. The d electron binding energies (the energy differences between the VBM and

the d states) are improved from LDA. The d electron binding energy discrepancy is also

within 0.5 eV from experimental values except GaN where a larger 1.3 eV difference exists

for its deep (∼-18eV) d-level. In comparison, the GW d electron binding energy has larger

error than sX-LDA.

We have also compared our plane-wave semicore PP sX-LDA results with all-electron

sX-LDA results. The reported full potential linearized augmented plane-wave (FLAPW)

sX-LDA band gaps from Ref. [8] are shown in Table II. The band gap difference between

the PP and FLAPW sX-LDA are 0.31, 0.15, 0.09, and 0.43 eV for CdS, ZnSe, GaN, and

ZnS, respectively. These differences are similar in amplitudes as the differences between the

semicore PP and FLAPW LDA results. One problem is that due to our approximated way

to generate the semicore PP, the LDA discrepancy between the semicore PP and FLAPW is

slightly larger than difference between the conventional PP and FLAPW. Nevertheless, we

believe the general good agreement between the semicore PP and FLAPW sX-LDA results

comfirms the correctness of both methods.

IV. SUMMARY

We have investigated the inclusion of d-electrons in the planewave pseudopotential

screened-exchange LDA calculations. The inclusion of the cation d-electron is important

in many II-VI and III-V semiconductors as its energy is close to the valence s and p lev-

els. However, we found that when the conventional norm conserving LDA PP is used, the

sX-LDA band gaps become much smaller than the experimental results. We have iden-

tified the problem: that is because the pseudo wavefunctions have deviated considerably

from the all electron wavefunctions (especially for their center of mass positions). Although

by construction, these pseudo wavefunctions can regenerate the all electron LDA results
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in bulk calculations, they cannot represent the screened exchange integrals of the all elec-

tron wavefunctions. We have thus generated PP with semicores. With the inclusion of the

semicores, the pseudo wavefunctions become similar to the all electron wavefunctions, and

the amplitudes of the screened exchange integrals have been restored. The same problem

exists in planewave pseudopotential GW calculations, and similar semicore PP have been

used previously for GW calculations. Our semicore PP sX-LDA band gaps agree well with

the experimental ones, and the sX-LDA d-state energy levels agree better with experiment

than the GW results. Our semicore PP sX-LDA results also agree well with the FLAPW

sX-LDA results.

This work was supported by the DMS/BES/SC, and MICS/SC offices of the U.S. De-

partment of Energy under Contract No. DE-AC02-05CH11231. It used the resources of

National Energy Research Scientific Computing Center (NERSC).
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TABLE I: Comparison of atomic levels in all-electron and pseudopotential LDA results. εPP
l ,

and εAE
l are the highest occupied atomic eigenvalue with l angular momentum from (+20/+21)

pseudopotential and all-electron calculations, respectively. Kll′(+12/ + 13), Kll′(+20/ + 21)), and

Kll′(AE) are the screened-exchange integrals evaluated using φl(r), from (+12/+13) pseudopoten-

tial, (+20/+21) pseudopotential, and all-electron wavefunctions, respectively. We used the same

screening length as in the test bulk calculations; ZnS, CdS, GaN, and InN valence electron av-

erage densities were used for kTF in Zn, Cd, Ga, and In atoms, respectively. We averaged the

screened-exchange integral for an angular momentum over the magnetic quantum numbers.

Zn Cd Ga In

εPP
s − ε̃AE

s (eV) -0.034 -0.052 -0.029 -0.073

εPP
p − ε̃AE

p (eV) -0.004 0.007

εPP
d − ε̃AE

d (eV) 0.089 0.112 0.144 0.163

Kss(+12/ + 13)/Kss(AE) 1.04 1.11 1.04 1.10

Kss(+20/ + 21)/Kss(AE) 1.05 1.13 1.05 1.13

Ksp(+12/ + 13)/Ksp(AE) 1.02 1.05 1.03 1.05

Ksp(+20/ + 21)/Ksp(AE) 1.01 1.03 1.02 1.03

Ksd(+12/ + 13)/Ksd(AE) 2.38 1.85 1.91 2.10

Ksd(+20/ + 21)/Ksd(AE) 1.15 1.24 1.16 1.24

Kpp(+12/ + 13)/Kpp(AE) 1.01 1.02 1.01 1.02

Kpp(+20/ + 21)/Kpp(AE) 1.00 1.02 1.01 1.01

Kpd(+12/ + 13)/Kpd(AE) 1.99 1.60 1.50 1.72

Kpd(+20/ + 21)/Kpd(AE) 1.10 1.13 1.14 1.12

Kdd(+12/ + 13)/Kdd(AE) 0.62 0.94 0.79 0.90

Kdd(+20/ + 21)/Kdd(AE) 0.99 0.99 0.98 0.99
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TABLE II: The band gap energy (Eg) and the semicore d state binding energy (Ed) in eV. All

systems were calculated for the zinc-blende structure using the experimental lattice constants. The

d state binding energy is defined as the eigenvalue difference between the top most valence band

state energy and the highest d state energy at Γ point. PP and AE denote pseudopotential and

FLAPW calculations, respectively. For PP LDA and PP sX-LDA results, the numbers outside and

inside the parenthesis are the results using (+20/+21) PP’s and (+12/+13) PP’s, respectively, For

comparability reason, we list planewave LDA based GW calculation results with a random-phase

approximation for the screened Coulomb interaction and a plasmon-pole model for the dynamics

of the screening. In all these calculations, the spin-orbit effects were not taken into account.

ZnSe ZnS CdS GaN InN

PP LDA Eg 0.94 (0.97) 1.66 (1.70) 0.84 (0.84) 1.87 (1.69) -0.38 (-0.42)

Ed -6.21 (-6.61) -5.91 (-6.22) -7.17 (-7.46) -12.58 (-13.65) -12.79 (-13.31)

PP sX-LDA Eg 2.42 (1.41) 3.24 (2.41) 2.06 (1.78) 2.95 (2.40) 0.39 (0.08)

Ed -9.59 (-9.32) -8.83 (-8.64) -8.71 (-9.23) -16.39 (-17.35) -14.61 (-15.26)

AE LDA Eg 1.03 1.81 0.82 1.59 -0.49

AE sX-LDA Eg 2.57a 3.67a 2.37a 3.04a

GW Eg 2.32b, 2.24c 3.19b, 3.50d, 3.38c 2.45d, 2.11c 2.88d

Ed -7.0b, -7.31c -6.9b, -6.4d, 6.87c -8.1d, -7.55c -15.7d

Experiment Eg 2.82e 3.78e 2.48f 3.3g 0.8h

Ed -9.37i, -9.20j -9.0e -9.2k -17.7l

aReference 8. gReference 13.

bReference 12. hReference 14.

cReference 15. iReference 16.

dReference 11. jReference 17.

eReference 18. kReference 19.

fReference 20. lReference 21.
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FIG. 1: Radial wavefunctions, u(r) = rR(r), of Zn atom calculated in LDA. Upper panel: All-

electron wavefunctions (black lines) and (+12) Zn pseudopotential wavefunctions (red lines) are

shown. Solid, dashed, and dotted lines are for s, p, and d angular momentum, respectively. Lower

panel: Same as the upper panel except that (+20) Zn pseudopotential is used instead of (+12) Zn.
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FIG. 2: Band structure of zinc-blende ZnS. The dashed and solid lines denote the electron bands

calculated from LDA and sX-LDA, respectively. (a) Zn+12 core is used for the Zn pseudopotential.

(b) Zn+20 core is used for the Zn pseudopotential. LDA and sX-LDA bands are shifted so that the

valence band maximum be placed at zero energy.
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FIG. 3: Band edge states of zinc-blende ZnS. The dashed, solid, and dotted lines denote the electron

energy at CBM, VBM, and top d band state in order. Black and red lines correspond to LDA and

sX-LDA, respectively. LDA and sX-LDA bands are shifted relative to the LDA VBM energy.
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